El diagrama de árbol es otro método sencillo para calcular el número total de resultados y probabilidades. Al aplicar este método, se hace una representación grafica que incluye cierto número finito de pasos.
Ejemplo:
En el menú de una fonda, solo ofrecen limonada que puede ser pequeña, mediana o grande y con hielo o sin hielo.
En total tenemos seis posibilidades.
EJERCICIOS DE PRACTICA I
Escoge un sándwich de pan blanco o integral que sea de jamón, pavo o bistec.
Quieres reservar un crucero, te dan la opción de viajar solo o con una pareja; con balcón o sin balcón.
Tomar clases de inglés o del GED, en línea, en colegio comunitario o iglesia.
Comprar un carro o camioneta; estándar (manual) o automática; gris, roja o azul marino.
Elegir un postre, puede ser pastel o helado de tamaño pequeña, mediana o grande de chocolate, vainilla o fresa.
PRINCIPIO FUNDAMENTAL DE CONTAR
Una manera mas fácil para calcular el número posible de resultados posibles, si no se tienen cantidades muy grandes, es simplemente contar las variables.
Para calcular los posibles resultados, idéntica los eventos y el numero de maneras en que puede ocurrir.
Ejemplo:
Carlos tiene la opción de tomar un examen el lunes, miércoles o el viernes a las 9:00 A.M., 1:00 P.M., 5:00 P.M. o a las 7:00 P.M. ¿Cuántas oportunidades tiene Carlos para tomar su examen?
EJERCICIOS DE PRACTICA II
Tip: Calcula el número de maneras en que ocurre cada evento y multiplica.
Hornear un pastel de zanahoria, de chocolate, de fresa o vainilla con cubierta de fresa, chocolate, frambuesa o banana.
Lanza cubos numerados de seis lados.
Las placas en el estado de Illinois tienen tres letras y tres números. ¿Cuá es el número total de placas de automóvil si los primeros tres caracteres son letras y los últimos tres son dígitos?
Cada tarjeta de seguro social tiene un número de identificación de nueve dígitos. ¿Cuántos números posibles de seguro social hay?
PERMUTACIONES Y COMBINACIONES
La permutación consiste en ordenar objetos de un grupo en un orden definido, sin repeticiones donde el numero de posibilidades va disminuyendo. Para resolver la permutación se hace uso de la multiplicación descomponiendo en factores el número que queremos permutar (n) ordenándolo de mayor a menor (1). Se representa con estos símbolos (n!)
Ejemplo: 4! = 4 x 3 x 2 x 1 = 24 (Tip: Para obtener los factoriales, empieza con el número dado y se multiplica por cada numero menor hasta llegar al uno.
Ejemplo II:
Pensemos que tienen las siguientes figuras geométricas, a cada una le asignamos un número, ¿cómo podemos ordenar las figuras? En total son ocho.
Identificamos la función factorial: 8!
Descomponemos en factores del mayor al menor:
8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40320
En total hay 40320
También pueden pedir que elegir que se elija solo las primeras tres, en ese caso tendríamos:
8 x 7 x 6 = 336
Aplicando la formula nos debe dar el mismo resultado:
Donde n! representa el valor que se va a factorizar
r representa el n
COMBINACIONES
Un arreglo o lista de cosas en que el orden no es importante se llama combinaciones. En estas el orden no importa.
Si aplicamos usando el ejemplo de las figuras geométricas enumeradas, pero ahora usamos las figuras 1, 2 y 3, veamos las posibilidades que tenemos si están ordenadas y sin estarlo.
En la permutación son 6 veces mas posibilidades. 3! = 3 x 2 x 1 = 6
Aplicando la formula:
El número de combinaciones de cosas se puede calcular dividiendo cada número de permutaciones del conjunto completo entre el número de maneras en que se puede arreglar cada conjunto mas pequeño.
La probabilidad es una herramienta matemáticas que hace uso de diversas técnicas para asignar un número a la posibilidad de que un evento ocurra. Nos ayuda a predecir eventos futuros de los cuales no se tiene una garantía completa de que ocurran.
La probabilidad puede expresarse en como porcentaje, fracción.
Para resolver la probabilidad de un evento simple usamos la razón que es la relación de dos cantidades o magnitudes, estas pueden ser objetos, personas, etc.
Para determinar la probabilidad de un evento nos basamos en la razón del número de resultados favorables al número de resultados posibles.
Por ejemplo, si lanzamos dos dados, la probabilidad de que caiga un tres es ⅙, porque hay un 3 y en total son 6 caras.
La probabilidad de que caiga un número par es ½ y se puede expresar 50% 1 a 2 o ½.
En la siguiente ruleta, tenemos seis colores diferentes, si giramos la ruleta de manera aleatoria y esta se encuentra perfectamente equilibrada va a existir la misma posibilidad que la la flecha se detenga en cualquier color. Cada que gira la ruleta ocurre un evento y el color en el que se detiene es el resultado del evento.
Revisemos la probabilidad del evento:
La probabilidad de que se pare en el color rojo es de: 1/4, o 25% o 1 a 4
La probabilidad de que no pare en el color rojo es de: 3/4, 75% o 3 a 4
EJERCICIOS DE PRACTICA
Cintia compró cuatro boletos de una rifa que se va a llevar a cabo en la kermess del pueblo su esposo compró ocho boletos y su suegra diez. Si el boletaje total fue de 100. ¿Cuál es la probabilidad de que el premio lo gane Cintia?
Usando esa misma información, ¿Cuál es la probabilidad de que el premio se lo saque Cintia o su esposo?
¿Qué probabilidad hay de que el premio NO se lo saque su suegra?
¿Cuál es la probabilidad de que un mes del año escogido al azar comience con la letra «m»?
Irma compró $5 pesos de colaciones (dulces), en total en la bolsa venían 15 de color verde, 8 rojas, 12 amarillas, 6 azules, 5 moradas y 9 rosas. Al comerce la primera, ¿cuál es la probabilidad de que salga una colacion de color morada?
Usando esa misma información, ¿cuál es la probabilidad de que le salga una colación azúl o rosa?
Luis tiene una alcancia con monedas de las siguientes denominaciones: 7 de 25 centavos, 15 de 50 centavos y 3 de 10 centavos. Si saca una moneda, ¿Qué probabilidad hay de que la primera sea una de 25 o de 10 centavos?
¿Qué probabilidad hay de que la primera moneda sea de 50 centavos?
Un libro tiene 38 paginas, ¿qué probabilidad hay de que al abrirlo al azar, sea una pagina con número par?
Si se tira un dado de seis caras, ¿qué probabilidad hay de que caiga un número menor a 7?
Una rama de las matemáticas que hace uso de los triángulos es la trigonometría, para ello hay formulas establecidas que nos permiten encontrar valores y medir distancias en muchos casos inaccesibles.
El sistema de calculo usado para las razones trigonométricas se basa en el hecho de que con los lados de un triángulo rectángulo se pueden expresar razones exclusivas de los ángulos.
Ya sabemos que un triángulo rectángulo siempre tiene un ángulo de 90 grados y dos ángulos agudos que son complementarios (ángulos menores de 90°). Los ángulos tienen siempre un lado adyacente (que esta junto al ángulo) y un lado opuesto (opuesto al ángulo)
Analicemos la siguiente figura:
El lado adyacente al ángulo “a” mide 8.5ft y su ángulo opuesto mide 16ft. La hipotenusa nunca es opuesto o adyacente.
Para el ángulo «b», su lado adyacente mide 16ft y su lado opuesto 8.5ft.
Eso es todo lo que necesitamos para obtener el seno, coseno y tangente. Ahora revisemos las razones trigonométricas.
Una vez que se obtiene el valor del seno, coseno o tangente, se puede buscar la medida del ángulo usando la siguiente tabla.
Para obtener el factor de escala, hay que familiarizarnos con las “figuras similares” ya que este es la proporción entre la longitud del mismo lado y misma posición. El factor de escala se va a aplicar para resolver problemas sencillos de geometría, para calcular las longitudes del lado de una figura.
Ambas figuras son similares y con respecto a los lados, son correspondientes aquellos que se encuentran en la misma posición. Así tenemos tres lados correspondientes: “ab” y “mo”, “ac” a “mn”, “bc” a “on”. Otro dato importante es que el valor de los ángulos correspondiente en ambas figuras siempre debe tener el mismo valor.
Para obtener el factor de escala necesitas el valor de los dos lados correspondientes.
Cada figura tiene su factor de escala, uno se usa para agrandar la figura y otro para achicarlas.
Para obtener el factor de escala de la figura grande se divide la longitud mayor entre la menor.
Para obtener el factor de escala de la figura chica se divide la longitud menor entre la mayor. Esta ultima siempre va a quedar en formato de fracción y en la mayoría de los casos hay que simplificar.
Ahora si obtienes el factor de escala de la figura grande, puedes obtener otras longitudes de la figura, que también se pueden obtener aplicando la regla de tres.
Si tenemos la longitud de la figura grande DIVIDES entre el factor de escala. 18 entre 4 = 4.5
COMPRUEBA aplicando la regla de tres y te debe dar el mismo valor
Por el contrario, si el valor que tienes es el de la figura chica, MULTIPLICAS 4.5 x 4 = 18
COMPRUEBA aplicando la regla de tres y te debe dar el mismo valor.
EJEMPLO II
Ahora, si las siguientes figuras son similares y sus ángulos internos son semejantes. Hay que obtener el valor de “x” y “h”
PASO I
Obtén el factor de escala de la figura grande. Recuerda, identifica las longitudes en las que se tengan tanto el valor de la figura grande como el de la chica.
PASO II
Una vez que tengas el valor de escala. DIVIDE el valor de la figura mayor entre el factor de escala para obtener el valor de la figura chica.
Comprueba aplicando la regla de tres:
Para obtener el valor de la figura grande, MULTIPLICA el valor de la figura chica por el factor de escala.
Comprueba aplicando la regla de tres:
EJERCICIOS DE PRACTICA
Encuentra el factor de escala de la figura grande
Encuentra el factor de escala de la figura chica.
Encuentra el valor de p aplicando el factor de escala de la figura grande.
Encuentra el valor de p aplicando la regla de tres.
Encuentra el valor de m aplicando el factor de escala de la figura grande.
Encuentra el valor de m aplicando la regla de tres
Encuentra el valor de z aplicando el factor de escala de la figura grande
Encuentra el valor de z aplicando la regla de tres.
Preguntas de la 9 a la corresponden a la siguiente figura.
Obtén el factor de escala de la figura grande.
Obtén el factor de escala de la figura chica.
Obtén el valor de b aplicando la regla de tres.
Obtén el valor de k aplicando la regla de tres.
Obtén el valor de p aplicando el factor de escala de la figura grande.
Obtén el valor de w aplicando la regla de tres.
Obtén el valor de h aplicando el factor de escala de la figura grande.
Obtén el valor de t aplicando el factor de escala de la figura grande.
El siguiente examen de practica incluye solo preguntas relacionadas con GEOMETRÍA, el examen de matemáticas incluye temas de álgebra, geometría, fracciones y aritmética. Ya tenemos un examen de practica de ÁLGEBRA y lo puedes contestar en este enlace.
Las explicación de las respuestas se van a transmitir en el canal de Youtube el martes 3 de diciembre a las 8:00 pm hora este. Una vez publicado el video, lo anexto a esta pagina para que puedan usarlo como futura referencia.
Las preguntas 1 a la 3 hacen referencia a la siguiente figura.
1. ¿Cuántos metros cuadrados es más grande la cochera que la hortaliza del siguiente plano?
a) 2m2
b) 4m2
c) 8m2
d) 1m2
2. ¿En el plano, qué porcentaje del terreno representa la alberca? Redondea tu respuesta a la unidad más cercana.
a) 7%
b) 1%
c) 3%
d) 5%
3. ¿Cuál es la razón del área de la casa al área de la cochera?
a) 56 a 12
b) 3 a 14
c) 9:2
d) 14:3
4. ¿Cuál es el área de la siguiente figura?
a) 114ft2
b) 99ft2
c) 84ft2
d) 89ft2
5. Carlos y Tere van a compartir una nieve, si Carlos va a tomar solo la cantidad de nieve que contiene el cono, ¿Qué cantidad en centímetros cúbicos le va a tocar a Carlos?
a) 5cm3
b) 36cm3
c) 45.8cm3
d) 5cm3
3) 6cm3
6. Si el área del siguiente cuadrado es de 64m2, ¿Cuál es radio de los círculos?
a) 16m
b) 8m
c) 4m
d) 2m
7. ¿Cuál es el área de la parte sombreada de la siguiente figura?
a) 15ft2
b) 19ft2
c) 8ft2
d) 25ft2
8. Laura quiere poner encaje alrededor de un babero sin tomar en cuenta las cintas, ¿cuánto encaje necesita si va a hacer 4 en total?
a) 13.8ft
b) 27.7ft
c) 86.8ft
d) 55.4ft
9. ¿Cuál es el área de la siguiente figura?
a) 400ft2
b) 750ft2
c) 575ft2
d) 350ft2
10. ¿Cuál es el área, en metros cuadrados de la parte naranja?
a) 125.6m2
b) 136m2
c) 156.8m2
d) 28.26m2
11. ¿Cuántos azulejos se necesitan para ponerlos alrededor de una piscina rectangular que mide 9 por 4 yardas? Cada azulejo mide 1 pie de largo. 1 yarda = 3 pies
a) 108
b) 72
c) 56
e) 36
12. Arturo tiene una jardinera en forma de media luna, como se indica abajo, si quiere poner tierra con un pie de espesor, ¿cuántos pies cúbicos de tierra necesita?
a) 508.9 in2
b) 113.09 in2
c) 1017..36 in2
d) 84.82 in2
13. Un negocio de carros está ubicado en un terreno rectangular donde las oficinas están representadas por la parte gris y el taller de mantenimiento es la superficie blanca, ¿Cuál es la diferencia en pies cuadrados del taller con las oficinas si el diámetro de la parte circular es de 18 pies? Hay que convertir los pies a yardas dividiendo entre tres. (OJO, la respuesta va a ser en yardas y hay que convertir a pies multiplicando por tres)
a) 990ft2
b) 330ft2
c) 947.5ft2
d) 315ft2
14. En un contenedor piensan trasladar varios cilindros de líquido de limpieza, si el diámetro de cada cilindro es de 2 pies. ¿cuántos cilindros pueden transportan en el contenedor?
a) 80 cilindros
b) 160 cilindros
c) 100 cilindros
d) 203 cilindros
15. Si el área de la parte cuadrangular es de 49 pies cuadrados, ¿cuánto mide el radio de cada círculo?
a) 6.125ft
b) 12.25ft
c) 7ft
d) 3.5ft
16. Si un cuadrado tiene una superficie de 64 pies cuadrados, ¿Cuál es el valor de x? Redondea a la unidad más cercana.
a) 49ft
b) 13ft
c) 31ft
d) 16ft
17. ¿Si el diámetro del circulo es de 12 pies, cuál es el área de superficie de la siguiente figura?
a) 1695ft3
b) 1055ft3
c) 2826ft3
d) 942ft3
18. Melissa quiere empacar una pieza decorativa en forma de cono en una envoltura con forma cilíndrica, para protegerla necesita rellenar los espacios vacíos, ¿cuánta cantidad de relleno necesita? Redondea tu respuesta a la unidad mas cercana.
a) 897ft3
b) 731ft3
c) 475ft3
d) 603.18ft3
19. Armando planea poner tejas en ambas alas del techo, si piensa dejar libre una sección para poner un panel solar (P) que cubre un total de 6 metros cuadrados, ¿Cuál va a ser el área de superficie del techo?
a) 30m2
b) 42m2
c) 48m2
d) 36m2
20. La siguiente ilustración muestra las medidas de una bodega a escala que se planea construir. Si la altura real de la bodega va a ser de 6m. ¿cuál es el factor de escala aplicado por el arquitecto?
a) 1.5
b) 3
c) 24
d) 2
21. Si en la maqueta el ancho de la bodega es de 3.5cm, ¿cuál sería la medida real?
a) 12m
b) 5m
c) 5 ¼ m
d) 3 ½ m
22. Para resolver el problema anterior puedes aplicar por lo menos dos métodos, si aplicaras la regla de tres, ¿cómo acomodarías los valores?
Para responder a la pregunta 23 a la 25, revisa la siguiente información.
El Monumento Nacional Monte Rushmore (en inglés, Mount Rushmore National Memorial) es un monumental conjunto escultórico tallado entre 1927 y 1941 en una montaña de granito situada en Keystone, Dakota del Sur (Estados Unidos) en el que figuran los rostros de 18 metros de altura de los presidentes estadounidenses George Washington, Thomas Jefferson, Theodore Roosevelt y Abraham Lincoln. Cada cabeza mide 18 m de altura y, en promedio, la nariz de cada una mide 6 m de largo, la boca 5,5 m de ancho y los ojos 3,4 m de un extremo al otro. Para dar carácter y expresión a los rostros en esa escala fue necesario un toque maestro: Borglum dio a los ojos un destello de vida dejando una columna de granito de unos 56 cm de largo a modo de pupila, que la luz del sol hace resaltar contra la sombra que ésta forma.
Borglum murió el 29 de marzo de 1941 a la edad de 73 años, poco antes de que el monumento quedara terminado. Los toques finales fueron supervisados por su hijo Lincoln Borglum que, siendo apenas un adolescente, había trabajado como supervisor al inicio del proyecto. Referencia: Monte Rushmore
Registro de número de visitantes
Año
Visitants
1941
393,000
1950
740,499
1960
1,067,000
1970
1,965,700
1980
1,284,888
1990
1,671,673
2000
1,868,876
2010
2,331,237
Obtén el factor de escala si la medida de la cabeza en la maqueta diseñada para construir el Monte Rushmore fuera de 12 cm de altura.
a) 2
b) 2 ½
c) 1
d) 1 ½
24. ¿Cuál es el rango de visitantes representado en la tabla?
25. Si en el año 2010, un 25% de los visitantes fueron mujeres. ¿Cuántas mujeres visitaron el Monte Rushmore en ese año?
Si te estás preparando para tu examen del GED, HiSET o TASC, este examen de practica te puede ayudar para auto-evaluarte y determinar que áreas y temas debes estudiar mas.
Al final de las preguntas vas a encontrar un video con las respuestas y explicación de cada ejercicio. También ligas donde se menciona el tema que se aborda en cada problema donde vas a encontrar mas videos y ejercicios para que estudies.
A continuación les dejo las ligas de los temas por cada ejercicio.
La siguiente clase esta dirigida a estudiantes adultos que quieren aprender lo básico de álgebra y avanzar poco a poco hasta tener las bases para estudiar contenidos mas avanzados.
La clase se va a impartir los LUNES a las 8:00 pm hora este por el canal de Youtube – SpanishGED. La clase dará inicio el lunes 9 de septiembre, y se expandera según las necesidades de los estudiantes, hasta principios de diciembre.
La clase es gratuita y cualquier persona interesada puede participar, para ello pueden incorporarse al grupo de Facebookdonde se publicará el enlace para ver la clase en vivo.
Una vez que se transmita una clase en el canal de Youtube, el video se publicará en esta columna y se irán incorporando nuevos videos conforme se transmita cada clase.
Después de cada video vas a encontrar algunos enlaces donde van a encontrar otros videos y ejercicios que cubren el tema de cada clase.
1. SUMA Y RESTA DE NÚMEROS CON SIGNO
Dale click al enlace para revisar otro video y ejercicios donde se cubre el tema de «operaciones de números con signos»
En el siguiente enlace hay otros recursos didácticos que puedes usar para repasar este tema. Ve a la unidad III y estudia, «los números con signo»
En este enlace pueden estudiar problemas verbales de números con signo. La plataforma se llama «operaciones avanzadas» revisen la unidad I, temas 1, 2 y 3
La suma de dos números es 190 y 1/9 de su diferencia es 2. Hallar los números.
La suma de dos números es 1,529 y su diferencia 101. ¿Cuáles son los dos números?
Un cuarto de la suma de dos números son 45 y un tercio de su diferencia es 4, ¿cuáles son los números?
Los 2/3 de la suma de dos números son 74 y los 3/5 de su diferencia 9. ¿Cuál es el par de números?
En un cine, 10 entradas de adultos y 9 de niño cuestan $512. Si por 17 entradas de niño y 15 de adulto se pagó $831, hallar el precio de una entrada de niño y una de adulto.
Gabriela es tesorera de la cooperativa Almanza, que elabora tapetes sólo de dos tamaños. El precio de los tapetes chicos es de $250.00 y de los grandes de $450.00. Al hacer su relación de ventas de ayer, le dijeron que en total habían vendido 12 piezas de tapetes de los dos tamaños y reunido $4 000.00.
La entrada al circo cuesta $65.00 para adulto y $35.00 para niño. Hoy recaudaron $ 18 995.00 por 439 boletos vendidos. ¿Cuántos boletos para adulto vendieron y cuántos para niño?
Una carga de quesos pesa 51.6 kg. Si en total trae 27 quesos de 1.6 kg y 2.3 kg, ¿cuántos quesos de cada peso trae?
En la unidad residencial Bosques del Oriente viven 229 personas que pertenecen a familias de 3 o 5 integrantes. ¿Cuántas familias de 3 integrantes hay en la unidad y cuántas de 5, si se sabe que ahí viven 65 familias? Ejercicios del 6 al 9 se tomaron de «operaciones avanzadas»
Durante este verano 2019 las clases se van a impartir los jueves a las 8:00 pm hora este y los sábados a las 10:30 am hora este por el canal de YOUTUBE, una vez que se termine la clase vas a encontrar las tareas y el video publicado en nuestra pagina web.
Aquí puedes suscribirte al canal de YouTube (solo dale click a la imagen)
I. Despejamos una «y» II. Colocamos su valor en la otra ecuación. III. Resolvemos la ecuación para encontrar el valor de «x» IV. Sustituimos «x» para encontrar el valor de «y»
Método de suma y resta
I. Ordenamos las ecuaciones en este orden x + y = 0 II. Identificamos cual incognita podemos restar. III. Se cambian los signos, si es necesario. IV. Se suman o restan las ecuaciones. V. Despejar una de las incognitas VI. Buscar el valor de la otra incognita.
Durante este verano 2019 las clases se van a impartir los jueves a las 8:00 pm hora este y los sábados a las 10:30 am hora este por el canal de YOUTUBE, una vez que se termine la clase vas a encontrar las tareas y el video publicado en nuestra pagina web.
Aquí puedes suscribirte al canal de YouTube (solo dale click a la imagen)
REGLAS PARA MULTIPLICAR
I. DESCOMPONER EN FACTORES
II. ELIMINAR FACTORES COMUNES TANTO EN LOS DENOMINADORES COMO DENOMINADORES
III. MULTIPLICAR ENTRE SI LAS EXPRESIONES QUE QUEDAN.
EJERCICIOS DE PRACTICA
Al multiplicar o dividir, si es un número entero 6xy, se pone un «1» como denominador.
Durante este verano 2019 las clases se van a impartir los jueves a las 8:00 pm hora este y los sábados a las 10:30 am hora este por el canal de YOUTUBE, una vez que se termine la clase vas a encontrar las tareas y el video publicado en nuestra pagina web.
Aquí puedes suscribirte al canal de YouTube (solo dale click a la imagen)
Durante este verano 2019 las clases se van a impartir los jueves a las 8:00 pm hora este y los sábados a las 10:30 am hora este por el canal de YOUTUBE, una vez que se termine la clase vas a encontrar las tareas y el video publicado en nuestra pagina web.
Aquí puedes suscribirte al canal de YouTube (solo dale click a la imagen)
Durante este verano 2019 las clases se van a impartir los jueves a las 8:00 pm hora este y los sábados a las 10:30 am hora este por el canal de YOUTUBE, una vez que se termine la clase vas a encontrar las tareas y el video publicado en nuestra pagina web.
Aquí puedes suscribirte al canal de YouTube (solo dale click a la imagen)
En esta sesión vamos a continuar con el tema de «despejar formulas» solo que lo vamos a aplicar a figuras compuestas con más de una figura geométrica. Antes de estudiar este tema, se recomienda revisar la 7ª clase para estar mas familiarizado con los pasos y diferentes métodos con los que se puede despejar una formula. Esta clase se transmitirá el jueves 11 de julio a las 8:00 pm hora este, 7:00pm hora centro, 6:00pm hora de las montañas y a las 5:00pm hora oeste.
Si aún no has tomado nota de las formulas, puedes revisarlas y anotarlas en tu libreta en el siguiente enlace:
En el tema de hoy vamos a revisar como despejar formulas. Esto es si tenemos por ejemplo el valor del área de un circulo y nos piden obtener el radio. En otras palabras, despejar una formula es buscar un valor que desconocemos. A continuación hay una serie de videos donde se explica como despejar varias de las formulas mas usadas. En el video de la clase vamos a revisar como despejar otro tipo de formulas.